MATH 245 F23, Exam 2 Solutions

1. Carefully define the following terms: Big Omega (2), Big Theta (©)
Let a,,b, be sequences. We say that a, is big Omega of b, if there is some real M
and some natural ng such that for every n > ng we have M|a,| > |b,|. Let an,b, be
sequences. a, is big Theta of b, if a, is big O of b,, AND a, is big Omega of b,.

2. Carefully state the following theorems: Proof by Contradiction Theorem, Proof by Min-

imum Element Induction Theorem
The Proof by Contradiction Theorem says: For any propositions p, ¢, to prove implica-

tion p — ¢, we prove pA—q = F'. The Proof by Minimum Element Induction Theorem
says: If a nonempty set of integers has a lower bound, then it has a minimum.

3. Let ay,,b,,c, be sequences of real numbers. Suppose that a, = O(c,) and b, = O(c,).
Set d,, = a,, + b,. Prove that d,, = O(c,).
Because a, = O(c¢,), there are M, € R and n, € N such that if n > n, then
la,| < M,lc,|. Because b, = O(c,), there are M, € R and n, € N such that if
n > ny then |b,| < My|e,|. We need these four constants M,, My, ng, ny to find My, ng.

Let M = max(M,, M), My = 2M, and ny; = max(n,,ny). Let n > ng. Note that
n > g, o |a,| < Myle,| < M|e,|. Note also that n > ny, so |b,| < My|e,| < Mcy,|.
Finally, we have [du| = [a + ba| < |an| + [ba] < Mlcal + Mlea] = 2MJea| = Mlcy .

Note: |z+y| < |z|+|y| by the triangle inequality. It is not correct to say |z+y| = |z|+|y|

unless we know that x,y are each positive (which we don’t here). However I did not
take points off for this error.

4. Prove that Vo € R, 5x — 3|z + 2| < 2z — 5.
Let z € R. We have two cases, based on whether or not z +2 > 0 (i.e. x > —2).
Case z > —2: Now |z 42| =2 +2,s0 bx — 3|z +2| =bx —3(x+2) =22 —6 < 22— 5.
Case x < —2: Now |z 42| = —(x+2), so bz — 3|z + 2| = br + 3(z +2) = 8x + 6. Since
x < —2 in this case, we multiply by 6 to get 6z < —12 < —11. Add 2z + 6 to both
sides to get 8x+6 < 2z —5. Combining with the previous, we get bx —3|z+2| < 2x—5.

In both cases, the desired result 5z — 3|z + 2| < 2x — 5 holds.

5. Prove or disprove: Vo € R, [z|z]] = |z|z]].
The statement is false, and requires an explicit counterexample. Many solutions are
possible. One solution is: Take 2* = 1.2. We have |2*| =1 and 2*|2*| = 1.2. Hence
[x*|2*|] = 2 while |z*[2*]| = 1.

6. Prove that Vn € N, 4™ > 3™,
This is proved by (vanilla) induction. Base case n = 1: 4! =4 > 3 = 3L
Inductive case: Let n € N and assume that 4" > 3. Multiply both sides by 4 to get
Artl —4.4" > 4.3" > 3.3" = 3" Hence 4"+ > 371,



7. Solve the recurrence that has initial conditions ay = 2,a; = 7 and relation a,, = a,—1 +
26Ln_2 (n Z 2)
The characteristic polynomial is 7> — r — 2 = (r — 2)(r + 1), which has roots 2, —1.
Hence the general solution is a,, = A2" + B(—1)". We now apply the initial conditions
2=aqp=A2"4+B(-1)°=A+B,7=a = A2'+ B(—1)! = 2A— B. Solving the system
{2=A+B,7=2A— B} we get A =3, B = —1. Hence the desired specific solution is
an, = 3-2" —(—1)". If desired, this can be rewritten/simplified to a,, = 3-2"+(—1)"*1.

WARNING: 32" = 3(2") # (3-2)" = 6".

8. Prove Vn € Ny !Im € Ny, m® <n < (m+1)3.
Let m,my, my € Ny be arbitrary. Suppose that m? < n < (m; + 1)* and m3 < n <
(ma+1)3. We recombine to get m3 < n < (my+1)3, hence m? < (my +1)3. Applying
cube roots to both sides we get m; < mo+ 1. Starting over, we recombine again to get
m3 <n < (my+1)3 hence m3 < (my + 1)%. Applying cube roots to both sides we get
mo < mq + 1. Subtracting one and combining, we get ms — 1 < my < mo + 1. Since
m1, my are integers, we use a theorem from the book (Thm 1.12(d)) to get my = ma.

ALTERNATE PROOF: Let m,my,my € Ny be arbitrary. Suppose that m} < n <
(my 4+ 1)% and m3 < n < (mg + 1)3. Now, we take cube roots of the first equation to
get my < /n < my + 1. But also |[/n] < ¥/n < [¥/n] +1. We have two integers,
my and | /n], satisfying the same double inequality. By the uniqueness of floor, we
must have m; = [/n|. We start over, taking cube roots of the second equation to get
my < ¥/n < 21+ 1. Again we apply uniqueness of floor to get my = |¢/n|. Hence
my1 = |/n| = msy, so we conclude m; = mo.

9. Use maximum element induction to prove Vn € Ny 3m € Ny, m? <n < (m + 1)3.
Let n € Ny be arbitrary, and set S = {a € Ny : a® <n}orS={a€Z:a>0Aa® <n}.
Note that S is nonempty, because 0 € S (since 02 = 0 < n). Also note that /n is an
upper bound for S, since if @ € S then a®> < n and hence a < /n. Maximum element
induction gives us a maximum m € S, i.e. m3 < n but (m + 1)3 £ n. Combining, we
get m3 <n < (m+1)3.

NOTE: If you use S = {a € Z : a® < n}, then you can still do maximum element
induction (it’s easier to prove that S is nonempty, since it’s a halfline) to find m € Z
with m3 < n < (m + 1)3, but you now have to worry about whether m € Ny or not.

10. Prove that for all n € Z with n > 3, that F,, < 3F,,_,. Here F,, denotes the Fibonacci

numbers.
We need strong induction and two base cases: n =3 has F3 =2 <3=3F;,andn =14

has Fy =3 < 3 = 3Fs.

Inductive case: Let n € Z with n > 5, and suppose that the predicate is true for all
smaller n (that are at least 3). In particular, it is true for n — 1 and n — 2. Hence
F, 1 <3F, 3and F,,_ 5 < 3F,_4. We add these inequalities, getting F,,_1 + F,,_o <
3F,_3+3F,_4 =3(F,_3+ F,_4). Now, the defining recurrence of Fibonacci numbers
gives F,, = F,_ 1+ F,,_s and F,,_s = F,,_3+ F,,_4. Substituting, we get F, < 3F,_s.



