
MATH 245 F23, Exam 2 Solutions

1. Carefully define the following terms: Big Omega (Ω), Big Theta (Θ)
Let an, bn be sequences. We say that an is big Omega of bn if there is some real M
and some natural n0 such that for every n ≥ n0 we have M |an| ≥ |bn|. Let an, bn be
sequences. an is big Theta of bn if an is big O of bn, AND an is big Omega of bn.

2. Carefully state the following theorems: Proof by Contradiction Theorem, Proof by Min-
imum Element Induction Theorem
The Proof by Contradiction Theorem says: For any propositions p, q, to prove implica-
tion p→ q, we prove p∧¬q ≡ F . The Proof by Minimum Element Induction Theorem
says: If a nonempty set of integers has a lower bound, then it has a minimum.

3. Let an, bn, cn be sequences of real numbers. Suppose that an = O(cn) and bn = O(cn).
Set dn = an + bn. Prove that dn = O(cn).

Because an = O(cn), there are Ma ∈ R and na ∈ N such that if n ≥ na then
|an| ≤ Ma|cn|. Because bn = O(cn), there are Mb ∈ R and nb ∈ N such that if
n ≥ nb then |bn| ≤Mb|cn|. We need these four constants Ma,Mb, na, nb to find Md, nd.

Let M = max(Ma,Mb), Md = 2M , and nd = max(na, nb). Let n ≥ nd. Note that
n ≥ na, so |an| ≤ Ma|cn| ≤ M |cn|. Note also that n ≥ nb, so |bn| ≤ Mb|cn| ≤ M |cn|.
Finally, we have |dn| = |an + bn| ≤ |an|+ |bn| ≤M |cn|+ M |cn| = 2M |cn| = Md|cn|.
Note: |x+y| ≤ |x|+|y| by the triangle inequality. It is not correct to say |x+y| = |x|+|y|
unless we know that x, y are each positive (which we don’t here). However I did not
take points off for this error.

4. Prove that ∀x ∈ R, 5x− 3|x + 2| < 2x− 5.

Let x ∈ R. We have two cases, based on whether or not x + 2 ≥ 0 (i.e. x ≥ −2).

Case x ≥ −2: Now |x+ 2| = x+ 2, so 5x− 3|x+ 2| = 5x− 3(x+ 2) = 2x− 6 < 2x− 5.
Case x < −2: Now |x+ 2| = −(x+ 2), so 5x− 3|x+ 2| = 5x+ 3(x+ 2) = 8x+ 6. Since
x < −2 in this case, we multiply by 6 to get 6x < −12 < −11. Add 2x + 6 to both
sides to get 8x+6 < 2x−5. Combining with the previous, we get 5x−3|x+2| < 2x−5.

In both cases, the desired result 5x− 3|x + 2| < 2x− 5 holds.

5. Prove or disprove: ∀x ∈ R, dxbxce = bxbxcc.
The statement is false, and requires an explicit counterexample. Many solutions are
possible. One solution is: Take x? = 1.2. We have bx?c = 1 and x?bx?c = 1.2. Hence
dx?bx?ce = 2 while bx?bx?cc = 1.

6. Prove that ∀n ∈ N, 4n > 3n.

This is proved by (vanilla) induction. Base case n = 1: 41 = 4 > 3 = 31.
Inductive case: Let n ∈ N and assume that 4n > 3n. Multiply both sides by 4 to get
4n+1 = 4 · 4n > 4 · 3n ≥ 3 · 3n = 3n+1. Hence 4n+1 > 3n+1.



7. Solve the recurrence that has initial conditions a0 = 2, a1 = 7 and relation an = an−1 +
2an−2 (n ≥ 2).

The characteristic polynomial is r2 − r − 2 = (r − 2)(r + 1), which has roots 2,−1.
Hence the general solution is an = A2n +B(−1)n. We now apply the initial conditions
2 = a0 = A20+B(−1)0 = A+B, 7 = a1 = A21+B(−1)1 = 2A−B. Solving the system
{2 = A+B, 7 = 2A−B} we get A = 3, B = −1. Hence the desired specific solution is
an = 3 ·2n− (−1)n. If desired, this can be rewritten/simplified to an = 3 ·2n +(−1)n+1.

WARNING: 3 · 2n = 3 (2n) 6= (3 · 2)n = 6n.

8. Prove ∀n ∈ N0 !m ∈ N0, m3 ≤ n < (m + 1)3.

Let n,m1,m2 ∈ N0 be arbitrary. Suppose that m3
1 ≤ n < (m1 + 1)3 and m3

2 ≤ n <
(m2 + 1)3. We recombine to get m3

1 ≤ n < (m2 + 1)3, hence m3
1 < (m2 + 1)3. Applying

cube roots to both sides we get m1 < m2 + 1. Starting over, we recombine again to get
m3

2 ≤ n < (m1 + 1)3, hence m3
2 < (m1 + 1)3. Applying cube roots to both sides we get

m2 < m1 + 1. Subtracting one and combining, we get m2 − 1 < m1 < m2 + 1. Since
m1,m2 are integers, we use a theorem from the book (Thm 1.12(d)) to get m1 = m2.

ALTERNATE PROOF: Let m,m1,m2 ∈ N0 be arbitrary. Suppose that m3
1 ≤ n <

(m1 + 1)3 and m3
2 ≤ n < (m2 + 1)3. Now, we take cube roots of the first equation to

get m1 ≤ 3
√
n < m1 + 1. But also b 3

√
nc ≤ 3

√
n ≤ b 3

√
nc + 1. We have two integers,

m1 and b 3
√
nc, satisfying the same double inequality. By the uniqueness of floor, we

must have m1 = b 3
√
nc. We start over, taking cube roots of the second equation to get

m2 ≤ 3
√
n < 21 + 1. Again we apply uniqueness of floor to get m2 = b 3

√
nc. Hence

m1 = b 3
√
nc = m2, so we conclude m1 = m2.

9. Use maximum element induction to prove ∀n ∈ N0 ∃m ∈ N0, m3 ≤ n < (m + 1)3.

Let n ∈ N0 be arbitrary, and set S = {a ∈ N0 : a3 ≤ n} or S = {a ∈ Z : a ≥ 0∧a3 ≤ n}.
Note that S is nonempty, because 0 ∈ S (since 03 = 0 ≤ n). Also note that 3

√
n is an

upper bound for S, since if a ∈ S then a3 ≤ n and hence a ≤ 3
√
n. Maximum element

induction gives us a maximum m ∈ S, i.e. m3 ≤ n but (m + 1)3 6≤ n. Combining, we
get m3 ≤ n < (m + 1)3.

NOTE: If you use S = {a ∈ Z : a3 ≤ n}, then you can still do maximum element
induction (it’s easier to prove that S is nonempty, since it’s a halfline) to find m ∈ Z
with m3 ≤ n < (m + 1)3, but you now have to worry about whether m ∈ N0 or not.

10. Prove that for all n ∈ Z with n ≥ 3, that Fn ≤ 3Fn−2. Here Fn denotes the Fibonacci
numbers.
We need strong induction and two base cases: n = 3 has F3 = 2 ≤ 3 = 3F1, and n = 4
has F4 = 3 ≤ 3 = 3F2.

Inductive case: Let n ∈ Z with n ≥ 5, and suppose that the predicate is true for all
smaller n (that are at least 3). In particular, it is true for n − 1 and n − 2. Hence
Fn−1 ≤ 3Fn−3 and Fn−2 ≤ 3Fn−4. We add these inequalities, getting Fn−1 + Fn−2 ≤
3Fn−3 + 3Fn−4 = 3(Fn−3 + Fn−4). Now, the defining recurrence of Fibonacci numbers
gives Fn = Fn−1 + Fn−2 and Fn−2 = Fn−3 + Fn−4. Substituting, we get Fn ≤ 3Fn−2.


