MATH 245 F23, Exam 2 Solutions

1. Carefully define the following terms: Big Omega (Ω), Big Theta (Θ)

Let a_{n}, b_{n} be sequences. We say that a_{n} is big Omega of b_{n} if there is some real M and some natural n_{0} such that for every $n \geq n_{0}$ we have $M\left|a_{n}\right| \geq\left|b_{n}\right|$. Let a_{n}, b_{n} be sequences. a_{n} is big Theta of b_{n} if a_{n} is big O of b_{n}, AND a_{n} is big Omega of b_{n}.
2. Carefully state the following theorems: Proof by Contradiction Theorem, Proof by Minimum Element Induction Theorem
The Proof by Contradiction Theorem says: For any propositions p, q, to prove implication $p \rightarrow q$, we prove $p \wedge \neg q \equiv F$. The Proof by Minimum Element Induction Theorem says: If a nonempty set of integers has a lower bound, then it has a minimum.
3. Let a_{n}, b_{n}, c_{n} be sequences of real numbers. Suppose that $a_{n}=O\left(c_{n}\right)$ and $b_{n}=O\left(c_{n}\right)$. Set $d_{n}=a_{n}+b_{n}$. Prove that $d_{n}=O\left(c_{n}\right)$.
Because $a_{n}=O\left(c_{n}\right)$, there are $M_{a} \in \mathbb{R}$ and $n_{a} \in \mathbb{N}$ such that if $n \geq n_{a}$ then $\left|a_{n}\right| \leq M_{a}\left|c_{n}\right|$. Because $b_{n}=O\left(c_{n}\right)$, there are $M_{b} \in \mathbb{R}$ and $n_{b} \in \mathbb{N}$ such that if $n \geq n_{b}$ then $\left|b_{n}\right| \leq M_{b}\left|c_{n}\right|$. We need these four constants $M_{a}, M_{b}, n_{a}, n_{b}$ to find M_{d}, n_{d}. Let $M=\max \left(M_{a}, M_{b}\right), M_{d}=2 M$, and $n_{d}=\max \left(n_{a}, n_{b}\right)$. Let $n \geq n_{d}$. Note that $n \geq n_{a}$, so $\left|a_{n}\right| \leq M_{a}\left|c_{n}\right| \leq M\left|c_{n}\right|$. Note also that $n \geq n_{b}$, so $\left|b_{n}\right| \leq M_{b}\left|c_{n}\right| \leq M\left|c_{n}\right|$. Finally, we have $\left|d_{n}\right|=\left|a_{n}+b_{n}\right| \leq\left|a_{n}\right|+\left|b_{n}\right| \leq M\left|c_{n}\right|+M\left|c_{n}\right|=2 M\left|c_{n}\right|=M_{d}\left|c_{n}\right|$.
Note: $|x+y| \leq|x|+|y|$ by the triangle inequality. It is not correct to say $|x+y|=|x|+|y|$ unless we know that x, y are each positive (which we don't here). However I did not take points off for this error.
4. Prove that $\forall x \in \mathbb{R}, 5 x-3|x+2|<2 x-5$.

Let $x \in \mathbb{R}$. We have two cases, based on whether or not $x+2 \geq 0$ (i.e. $x \geq-2$).
Case $x \geq-2$: Now $|x+2|=x+2$, so $5 x-3|x+2|=5 x-3(x+2)=2 x-6<2 x-5$. Case $x<-2$: Now $|x+2|=-(x+2)$, so $5 x-3|x+2|=5 x+3(x+2)=8 x+6$. Since $x<-2$ in this case, we multiply by 6 to get $6 x<-12<-11$. Add $2 x+6$ to both sides to get $8 x+6<2 x-5$. Combining with the previous, we get $5 x-3|x+2|<2 x-5$.

In both cases, the desired result $5 x-3|x+2|<2 x-5$ holds.
5. Prove or disprove: $\forall x \in \mathbb{R},\lceil x\lfloor x\rfloor\rceil=\lfloor x\lfloor x\rfloor\rfloor$.

The statement is false, and requires an explicit counterexample. Many solutions are possible. One solution is: Take $x^{\star}=1.2$. We have $\left\lfloor x^{\star}\right\rfloor=1$ and $x^{\star}\left\lfloor x^{\star}\right\rfloor=1.2$. Hence $\left\lceil x^{\star}\left\lfloor x^{\star}\right\rfloor\right\rceil=2$ while $\left\lfloor x^{\star}\left\lfloor x^{\star}\right\rfloor\right\rfloor=1$.

6. Prove that $\forall n \in \mathbb{N}, 4^{n}>3^{n}$.

This is proved by (vanilla) induction. Base case $n=1: 4^{1}=4>3=3^{1}$.
Inductive case: Let $n \in \mathbb{N}$ and assume that $4^{n}>3^{n}$. Multiply both sides by 4 to get $4^{n+1}=4 \cdot 4^{n}>4 \cdot 3^{n} \geq 3 \cdot 3^{n}=3^{n+1}$. Hence $4^{n+1}>3^{n+1}$.
7. Solve the recurrence that has initial conditions $a_{0}=2, a_{1}=7$ and relation $a_{n}=a_{n-1}+$ $2 a_{n-2}(n \geq 2)$.
The characteristic polynomial is $r^{2}-r-2=(r-2)(r+1)$, which has roots $2,-1$. Hence the general solution is $a_{n}=A 2^{n}+B(-1)^{n}$. We now apply the initial conditions $2=a_{0}=A 2^{0}+B(-1)^{0}=A+B, 7=a_{1}=A 2^{1}+B(-1)^{1}=2 A-B$. Solving the system $\{2=A+B, 7=2 A-B\}$ we get $A=3, B=-1$. Hence the desired specific solution is $a_{n}=3 \cdot 2^{n}-(-1)^{n}$. If desired, this can be rewritten/simplified to $a_{n}=3 \cdot 2^{n}+(-1)^{n+1}$.
WARNING: $3 \cdot 2^{n}=3\left(2^{n}\right) \neq(3 \cdot 2)^{n}=6^{n}$.
8. Prove $\forall n \in \mathbb{N}_{0}!m \in \mathbb{N}_{0}, m^{3} \leq n<(m+1)^{3}$.

Let $n, m_{1}, m_{2} \in \mathbb{N}_{0}$ be arbitrary. Suppose that $m_{1}^{3} \leq n<\left(m_{1}+1\right)^{3}$ and $m_{2}^{3} \leq n<$ $\left(m_{2}+1\right)^{3}$. We recombine to get $m_{1}^{3} \leq n<\left(m_{2}+1\right)^{3}$, hence $m_{1}^{3}<\left(m_{2}+1\right)^{3}$. Applying cube roots to both sides we get $m_{1}<m_{2}+1$. Starting over, we recombine again to get $m_{2}^{3} \leq n<\left(m_{1}+1\right)^{3}$, hence $m_{2}^{3}<\left(m_{1}+1\right)^{3}$. Applying cube roots to both sides we get $m_{2}<m_{1}+1$. Subtracting one and combining, we get $m_{2}-1<m_{1}<m_{2}+1$. Since m_{1}, m_{2} are integers, we use a theorem from the book (Thm 1.12(d)) to get $m_{1}=m_{2}$.
ALTERNATE PROOF: Let $m, m_{1}, m_{2} \in \mathbb{N}_{0}$ be arbitrary. Suppose that $m_{1}^{3} \leq n<$ $\left(m_{1}+1\right)^{3}$ and $m_{2}^{3} \leq n<\left(m_{2}+1\right)^{3}$. Now, we take cube roots of the first equation to get $m_{1} \leq \sqrt[3]{n}<m_{1}+1$. But also $\lfloor\sqrt[3]{n}\rfloor \leq \sqrt[3]{n} \leq\lfloor\sqrt[3]{n}\rfloor+1$. We have two integers, m_{1} and $\lfloor\sqrt[3]{n}\rfloor$, satisfying the same double inequality. By the uniqueness of floor, we must have $m_{1}=\lfloor\sqrt[3]{n}\rfloor$. We start over, taking cube roots of the second equation to get $m_{2} \leq \sqrt[3]{n}<2_{1}+1$. Again we apply uniqueness of floor to get $m_{2}=\lfloor\sqrt[3]{n}\rfloor$. Hence $m_{1}=\lfloor\sqrt[3]{n}\rfloor=m_{2}$, so we conclude $m_{1}=m_{2}$.
9. Use maximum element induction to prove $\forall n \in \mathbb{N}_{0} \exists m \in \mathbb{N}_{0}, m^{3} \leq n<(m+1)^{3}$.

Let $n \in \mathbb{N}_{0}$ be arbitrary, and set $S=\left\{a \in \mathbb{N}_{0}: a^{3} \leq n\right\}$ or $S=\left\{a \in \mathbb{Z}: a \geq 0 \wedge a^{3} \leq n\right\}$. Note that S is nonempty, because $0 \in S$ (since $0^{\overline{3}}=0 \leq n$). Also note that $\sqrt[3]{n}$ is an upper bound for S, since if $a \in S$ then $a^{3} \leq n$ and hence $a \leq \sqrt[3]{n}$. Maximum element induction gives us a maximum $m \in S$, i.e. $m^{3} \leq n$ but $(m+1)^{3} \not \leq n$. Combining, we get $m^{3} \leq n<(m+1)^{3}$.
NOTE: If you use $S=\left\{a \in \mathbb{Z}: a^{3} \leq n\right\}$, then you can still do maximum element induction (it's easier to prove that S is nonempty, since it's a halfline) to find $m \in \mathbb{Z}$ with $m^{3} \leq n<(m+1)^{3}$, but you now have to worry about whether $m \in \mathbb{N}_{0}$ or not.
10. Prove that for all $n \in \mathbb{Z}$ with $n \geq 3$, that $F_{n} \leq 3 F_{n-2}$. Here F_{n} denotes the Fibonacci numbers.
We need strong induction and two base cases: $n=3$ has $F_{3}=2 \leq 3=3 F_{1}$, and $n=4$ has $F_{4}=3 \leq 3=3 F_{2}$.
Inductive case: Let $n \in \mathbb{Z}$ with $n \geq 5$, and suppose that the predicate is true for all smaller n (that are at least 3). In particular, it is true for $n-1$ and $n-2$. Hence $F_{n-1} \leq 3 F_{n-3}$ and $F_{n-2} \leq 3 F_{n-4}$. We add these inequalities, getting $F_{n-1}+F_{n-2} \leq$ $3 F_{n-3}+3 F_{n-4}=3\left(F_{n-3}+F_{n-4}\right)$. Now, the defining recurrence of Fibonacci numbers gives $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-2}=F_{n-3}+F_{n-4}$. Substituting, we get $F_{n} \leq 3 F_{n-2}$.

